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ABSTRACT
The paradigm of crowd-sourced data collection (also known
as participatory sensing) has been bolstered by the exten-
sive availability of on-board sensors and electronic devices
in nowadays vehicles, which can be applied in a wide range
of transportation applications. Distance-to-empty (DTE) is
the distance an electric vehicle (EV) or internal-combustion
engine (ICE) vehicle can reach before its battery/fuel is ex-
hausted, which is determined by a variety of uncertain fac-
tors, such as driving behavior, terrain, types of road, traffic,
and vehicle specification. Eco-routing aims to optimize the
route selection with lower energy consumption. The accu-
racy of DTE prediction and eco-routing can be enhanced
substantially by the crowd-sourced data collected from di-
verse drivers and vehicles. However, a critical concomitant
issue for crowd-sourced data collection is privacy, because
the personal travel history may be misused without consents
from the contributing users. To encourage large-scale adop-
tion and contributions of crowd-sourced data collection from
end users, this paper addresses the issue of privacy and pro-
poses possible solutions to tackle the challenges. In partic-
ular, we discuss a solution of matrix factorization from col-
laborative filtering to enhance the privacy of crowd-sourced
data collection in the context of transportation applications,
such as DTE prediction and eco-routing.

CCS Concepts
•Applied computing → Transportation; •Security and
privacy → Privacy-preserving protocols;

Keywords
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1. INTRODUCTION
In crowd-sourced data collection (also known as partici-

patory sensing), a group of users contribute their personal
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data (possibly, voluntarily) to a third-party data repository,
in exchange for the useful knowledge extracted from the col-
lective data. The knowledge will be incorporated in person-
alized applications of individual users. Crowd-sourced data
collection has been applied in diverse applications of perva-
sive and mobile computing systems [3]. Recently, vehicles
are becoming a vital platform for crowd-sourced data col-
lection. First, there are extensive deployments of on-board
sensors and in-vehicle information systems, equipped with
network connectivity and computing power, acting as effec-
tive data collection systems. Second, the wide availability
of electronic devices and smartphones carried by passengers
can extend the sensing abilities of vehicles. Third, there
are abundant off-the-shelf and after-market automotive ac-
cessories for gathering driving data and vehicle information.
Notably, crowd-sourced data collection for vehicles has been
applied in certain existing transportation applications (e.g.,
traffic status updates in Google Map and Waze).

Several driving energy efficiency applications can be en-
hanced substantially by crowd-sourced data. One of the
critical applications is the prediction of distance-to-empty
(DTE) - the distance an electric vehicle (EV) or internal-
combustion-engine (ICE) vehicle can reach before its bat-
tery/fuel is exhausted. DTE is determined by a variety of
factors, such as driving behavior, terrain, types of road, traf-
fic, and vehicle specifications. The conventional approach of
DTE prediction employed by car manufacturers is based on
the projection of past average vehicle energy efficiency of in-
dividual drivers. Such an approach is often perceived to be
inaccurate. However, if there is sufficient knowledge about
the vehicle, driving behavior and the route to travel, future
energy efficiency can be estimated with higher accuracy. The
availability of crowd-sourced data is able to improve the ac-
curacy of DTE prediction by exploiting the historical data
from other drivers. Conceptually, one can identify the fac-
tors pertaining to various types of drivers, vehicles or envi-
ronments. Then, one can interpolate the data from similar
drivers, vehicles or environments to assist the prediction.
A framework of crowd-sourced data collection with appro-
priate factor extraction and incorporation mechanisms for
personalized applications can be applied to many other as-
pects, such as eco-routing, driving coaching and refueling
planning (as depicted in Fig. 1).

There are two common approaches of incorporation of
crowd-sourced data collection in personalized applications
for vehicles:

1. Comparison with the Average: One can obtain the
global characteristics by the average data values (e.g.,



Figure 1: A framework of crowd-sourced data collection for
vehicles.

average speed, mean stopping duration) from a large
crowd-sourced dataset for a specific environment. Then
we compensate the deviation of individual drivers from
the average data values in personalized applications.

2. Collaborative Filtering: A domain-free data mining
technique analyzes the local relationships and simi-
larities within a dataset to identify a smaller set of
factors or features that can characterize the observed
data. The major approaches of collaborative filter-
ing are neighborhood methods and latent factor mod-
els [11]. In particular, matrix factorization is a primary
solution of the latent factor models.

While crowd-sourced data collection can provide various
driving and vehicle data, a critical concomitant issue is pri-
vacy. The personal travel history may be misused without
consents from the contributing users, which discourages the
adoption and contributions from end users. This paper ad-
dress the issues of privacy and proposes possible solutions
to tackle the challenges. It is vital to address the issue of
privacy in the common approaches of crowd-sourced data
collection for vehicles. In this paper, we particularly discuss
a solution of matrix factorization from collaborative filter-
ing to enhance the privacy of crowd-sourced data collection
in the context of transportation applications, such as DTE
prediction and eco-routing.

2. RELATED WORK

2.1 Data Collection from Vehicles
The accuracy of driving energy consumption prediction

can be enhanced by extensive data collection. Two cru-
cial factors of energy consumption prediction are the fu-
ture speed profiles and future environmental factors (e.g.,
temperature, wind speed or route grade), which may be
highly dynamic and difficult to predict. Also, one can de-
ploy sensor networks, by which stationary measurements at
specific locations, such as traffic, average speed, speed limit
and route grade can be measured. There are a number of
papers focusing on utilizing such information [2, 8, 10]. A
study that integrates the real-time traffic sensor data to pre-
dict the energy consumption and emission of ICE vehicles
is presented in [17]. One can also obtain the estimated in-
formation from social networks and participatory sensing.
Participatory sensing can provide mobile measurements and
good geographic penetrations [16]. For example, a study
shows that the estimation of stochastic effects which impact
the travel velocity and acceleration profiles can be crowd-
sourced to identify traffic congestion [5]. Our previous work

has employed participatory sensing and provides personal-
ized DTE prediction system based on participatory sensing
data [13–15].

2.2 Privacy Aware Data Collection
The notion of ensuring privacy in data collection has been

extensively studied in the literature of privacy and secu-
rity. In particular, there are two common approaches: (1)
obfuscation by incorporating random perturbation, and (2)
cryptographic techniques such as multi-party computation.
Privacy-preserving data mining is a popular topic of incor-
porating random perturbation to prevent the inference of in-
dividual users’ information, while still allowing meaningful
data mining queries. There are several recent studies [1, 9]
that present mechanisms for differential privacy in matrix
factorization using Laplace mechanisms by incorporating ar-
tificial random noise. On the other hand, cryptographic ap-
proach, such as garbled circuit, has been employed in ma-
trix factorization [12], which requires higher computational
overhead. These studies consider the primary applications
for recommender systems, while this paper focus on the con-
text of transportation applications, such as DTE prediction
and eco-routing.

3. SETTINGS OF PRIVACY
The notion of privacy is related to the ability of seclusion

of ones’ private information through carefully designed in-
teractions with the external world. In the context of trans-
portation applications, individual drivers may be cautious
about revealing their personal information (e.g., travel his-
tory, driving habits, vehicle types, etc.) during the course
of crowd-sourced data collection process.

Privacy is not a binary option. There are different gran-
ularities and threat models under consideration. We first
discuss different levels of privacy settings in transportation
applications.

• Complete Privacy: No outsider can learn any in-
dividual’s data from the public data repository. Out-
siders cannot identify an individual who has contributed
personal data to the data repository, nor their types.

• Type-revealing Privacy: Outsiders may infer gen-
eral type-based information of the individuals who have
contributed personal data to the public data repository
(e.g., driving habits or vehicle types). But outsiders
cannot infer an individual’s fine-grained data (e.g., the
detailed travel history and locations).

• Identity-revealing Privacy: Outsiders may infer an
individual who has contributed personal data to the
public data repository, by associating with their con-
tributed data. But outsiders cannot infer an individ-
ual’s fine-grained data (e.g., the detailed travel history
and locations).

If providing complete privacy is too difficult or imprac-
tical, it would suffice to offer type-revealing or identity-
revealing privacy in practice, in particular, to balance the
trade-off between the usefulness of collected data and the
privacy of contributed users. Note that type-revealing or
identity-revealing privacy is sometimes acceptable in trans-
portation applications, for example, certain vehicle-owner
information is already available in public databases.



Next, we discuss the threat models related to the trust-
worthiness of data collector who processes individuals’ con-
tributed data to release to the data repository.

• Trusted Data Collector: End users can reveal their
identities and personal travel histories to the data col-
lector. But the data collector needs to ensure the pri-
vacy in the public data repository.

• Untrusted Data Collector: End users do not re-
veal their identities nor personal travel histories to the
data collector. The communication between users and
the data collector may be conducted in an anonymous
medium. Any information revealed by the users will
be released to the public data repository.

4. MODEL
In this section, we first present the driving energy con-

sumption models used for crowd-sourced data collection. We
will discuss the mechanisms to ensure privacy in the crowd-
sourced data collection process in the subsequent section.

4.1 Areas of Factors
While there are many factors to determine driving energy

consumption, they can be classified by three broad areas:

• Driver: The driver who controls the vehicle has a di-
rect impact on the vehicle movement. Different drivers
exhibit different preferences for stop/start and accel-
eration, aggression in various scenarios, propensity for
hypermiling, etc. Psychological and behavioral traits
of drivers also affect driving energy efficiency.

• Vehicle: Different types of vehicles consume energy
differently. ICE vehicles are characterized by the en-
gine types and gear shifts, whereas hybrid and EVs
are affected by battery performance and regenerative
braking. The sizes and weights of vehicles often de-
termine the efficiency of kinetic energy conversion, so
SUVs and trucks are usually less energy-efficient than
sedan and compact vehicles.

• Environment: The environmental factors include both
traffic and roads. Traffic for a road segment depends
on a plethora of factors, including time-of-day, day-of-
year, special events, which may follow a certain pat-
tern. The types of roads also affect drivers’ behavior
differently, which can be divided into three main cate-
gories: small public or private roads with urban traffic,
lower capacity “urban” highways, and higher capacity
freeways.

The historical data of vehicle speed profiles can be iden-
tified by a combination of (driver, vehicle, environment),
referred as a data point. Through crowd-sourced data col-
lection, a dataset of measured energy consumption for a rel-
atively small number of data points are collected. We will
interpolate the missing data points from the collected data
points.

4.2 Energy Consumption Model
This section describes a linear blackbox model of driving

energy consumption that has been used extensively in the
literature [4,8,14]. We denote a driver by D, a vehicle model
by V, and a particular environment (e.g., a segment of route

and time-of-day) by R. Each energy consumption is repre-
sented by a numerical value ED,V,R, indexed by the tuple
(D,V,R). All the entries of energy consumption values form
a 3-dimensional tensor, denoted by [ED,V,R].

While there are sophisticated approaches of estimating
the moving vehicle energy consumption by white-box mi-
croscopic behavior models, these models are rather difficult
to implement. Many parameters are required, for example,
engine efficiency, transmission efficiency, regenerative brak-
ing efficiency, etc. However, in practice, these parameters
are hard to obtain. Therefore, this paper utilizes a blackbox
approach without the detailed knowledge of vehicle mechan-
ics.

The total energy consumption E of driver D with vehicle
model V in a particular environment R is given by:

ED,V,R = Emv
D,V,R + Eid

D,V,R (1)

where Emv
D,V,R is the moving vehicle energy consumption and

Eid
D,V,R is the idle vehicle energy consumption. We next

present simple blackbox models to characterize Emv
D,V,R and

Eid
D,V,R.

4.2.1 Moving Vehicle Energy Consumption
With respect to a particular combination of (D,V,R), the

moving vehicle energy consumption Emv has unit in liter or
kWh. Next, we drop the subscript D,V,R for brevity.

In this paper, we estimate Emv (denoted by Êmv) by a lin-
ear equation of several measurable variables from vehicles1:

Êmv =
αv,1
αv,2

...
αv,r
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where

• v is the continuous average speed (i.e., the average
speed without idling). We also consider the higher
powers of v like v2, ..., vr.

• ~d = (τd, µd, σd) is the deceleration tuple:

– τd is the total duration of deceleration.

– µd is the mean deceleration (i.e., the sum of de-
celeration values divided by the deceleration du-
ration).

– σd is the standard deviation of deceleration.

We denote the higher powers of components in the

deceleration tuple by ~dk = (τkd , µ
k
d, σ

k
d).

• ~a is the acceleration tuple (similar to ~d).

• g is the mean absolute value of gyroscope along the
moving direction.

• ` is the auxiliary load of idling, which is the baseline
measurement when the vehicle is not moving.

1Some of the variables are selected based on [6], which an-
alyzed more than 20 thousand data points from 45 drivers
to identify the most significant factors of fuel consumption
and emission.



• c is a normalization constant.

• αv , (αv,1, ..., αv,r), αd , (αd,1, ..., αd,k), αa , (αa,1,
..., αa,k), αg, α` are the corresponding coefficients.

4.2.2 Idle Vehicle Energy Consumption
Similarly, we rely on a blackbox approach to estimate the

idle vehicle energy consumption. We drop the subscript D,V,R

for brevity. With respect to a particular combination of
(D,V,R), we estimate the idle vehicle energy consumption

Eid (denoted by Êid) by a linear equation:

Êid = βµ` (3)

where

• µ is the total idle duration.

• ` is the auxiliary load of idling.

• β is a coefficient.

The auxiliary load of idling ` can provide the baseline
energy consumption of an idle vehicle.

4.3 Estimation of Coefficients
The coefficients (αv, ~αd, ~αa, αg, α`, c, β) in Eqns. (2)-(3)

can be estimated by the standard regression method, if suf-

ficient measured data (v, ~d,~a, g, `, µ) and the respective en-

ergy consumption data (Êmv, Êid) are provided. We assume
that each driver-vehicle pair (D,V) has collected sufficient
historical personal driving data, and hence, the coefficients
can be estimated for the respective environment R. One
notable advantage of regression method is that it is less
susceptible to random noise, which can arise from various
sources (e.g., due to time synchronization in data sampling,
mechanic damping, inaccurate measurements).

5. INTERPOLATING CROWD-SOURCED
DATA

Given a dataset from crowd-sourced data collection, a
data point can be visualized as a point in a 3-dimensional
Euclidean space, indexed by (D,V,R). The crowd-sourced
dataset is usually sparse, consisting of a skewed and clus-
tered distribution of data points. In order to predict the
driving energy consumption for the data points that are not
present in crowd-sourced data, we interpolate the missing
data points to cover the space of dataset. An illustration
is depicted in Fig. 2. We next describe the interpolation
methods by comparison with the average and matrix factor-
ization.

5.1 Comparison with the Average
The simplest approach for estimating driving energy con-

sumption is to rely on the global characteristics in the dataset,
for example, based on the average data values (e.g., aver-
age speed) from crowd-sourced data. However, each driver
may deviate considerably from the average data values. To
compensate for the deviations, incorporating a personalized
adjustment can improve the prediction accuracy.

Let xD,V,R be a measurement (e.g., v, ~d or ~a) for tuple
(D,V) in environment R, and the average data value be x̄R.
We use an adjustment function DxD,V(·) to convert the aver-
age data value to the personal data value by:

xD,V,R = DxD,V(x̄R) (4)

Figure 2: Measured and interpolated data points in a sparse
dataset.

A simple adjustment function can be considered using re-
gression model:

DxD,V(x̄R) = η1D,Vx̄
2
R + η2D,Vx̄R + η3D,V (5)

5.2 Matrix Factorization
Collaborative filtering is a domain-free approach, relying

on the identification of abstract latent factors, which is based
on the local characteristics among similar data points. Ma-
trix factorization is a popular approach of constructing la-
tent factors, which has been implemented in recommenda-
tion system [11] and other large-scale problems [7].

Consider an example of sparse matrix X = [xD,V,R] of n
pairs of (D,V) and m road segments R, as shown in Table 1,

in which each entry represents a measurement (e.g., v, ~d
or ~a). Note that some data points may be missing in X
(denoted by “?”).

D,V
R

1 2 3 4 ... m

1 67 74 ? 32 ... 50
2 54 ? 83 44 ... 65
... ? 74 53 ? ... ?
n ? 66 58 ? ... 88

Table 1: An example of sparse matrix X of vehicle speed v.

The basic idea of matrix factorization is to find two low-
rank (n× k and m× k) matrices, P and Q, such that PQT

can approximate X. Namely,

X ≈ PQT = X̂ (6)

P and Q can be regarded as mappings to reduce the m,n-
dimensional space of the original dataset to a k-dimensional
space of latent factors, where k � min(m,n). We denote
the entry at the i-th column and the j-th row of X be xij .
Let M be the set of collected data points.

The objective of matrix factorization is find P,Q such that

min
P,Q

∑
i,j∈M

(xij − piqTj )2 + λP ||pi||2 + λQ||qj ||2 (7)

where pi is the i-th row vector of P , and qj is the j-th column
vector of Q. Since factorization may cause over-fitting, λP
and λQ are used to regularize the fitting.

There are two popular approaches to compute P,Q in
Eqn. (7): stochastic gradient descent [7] and alternating



least squares [11]. In this paper, we utilize stochastic gra-
dient descent. The basic idea is to go through all xij in X.
For each xij , determine the corresponding factor vectors pi
and qj . Then, compute the approximate value by piq

T
j and

update the parameters by:

pi ← pi + ε(eijqj − λP pi)
qj ← qj + ε(eijpi − λQqj)

(8)

where eij = xij −piqTj represents the difference between ap-
proximate value and actual value and ε is the learning rate.
Once P,Q are determined, the estimation of a missing data
x̂ij can be estimated by x̂ij = piq

T
j . All measurements (e.g.,

v, ~d or ~a) can be substituted and estimated using matrix
factorization. The estimated values can be utilized in the
driving energy consumption prediction.

6. PRIVACY-ENHANCING MECHANISMS
We describe mechanisms to enhance the privacy in the

data collection process. Our approach is based on introduc-
ing random perturbation to obfuscate any inference about
users’ personal information. We assume a trusted data col-
lector. However, the mechanisms can be adopted to consider
an untrusted data collector, following the approach in [9].

6.1 Definition
Consider a dataset denoted by matrix X = [xD,V,R] which

represents a measurement (e.g., v, ~d or ~a). A central prin-
ciple of defining privacy is that one would not be able to
infer the input dataset from the prediction output. Let h(·)
be a randomized mapping (which incorporates random per-
turbation) from the input dataset to the prediction output,

X̂ = h(X). Specifically, given two input datasets X1 and
X2, if they are not distinguishable under h(·) with an ex-
ponentially small probability, then it is unlikely to infer X1

or X2 from the prediction output, and hence, achieving a
considerable extent of privacy, if X1 and X2 differentiate in
a user’s contributed data.

Formally, we consider an adjacency relation “≈”, which is
a symmetric and transitive relation, such that X1 ≈ X2, if
X1 and X2 differentiate in certain contributed data from a
user. The extract definition of “≈” depends on the the level
of privacy setting, which will be explained in the subsequent
section. h(·) is said to satisfy ε-differential privacy, if

P
{
h(X1) ∈ S

}
≤ eε · P

{
h(X2) ∈ S

}
(9)

for any X1 ≈ X2, any range S of h(·) and an arbitrarily
small constant ε.

6.2 Laplacian Mechanisms
A popular method to devise ε-differentially private mech-

anisms is based on random perturbation with Laplace prob-
ability distribution. Denote by Laplace(µ, b) a random vari-

able, with probability density function f(x) = 1
2b
e−
|x−µ|
b .

Let

dmax , max
X1≈X2

‖h(X1)− h(X2)‖ (10)

and

hε(X) , h(X) + η (11)

where η ∼ Laplace(0, dmax
ε

) is a random variable with Laplace
probability distribution. Then, it can be shown [1, 9] that
hε(·) satisfy ε-differential privacy.

Laplacian mechanisms have been proposed to achieve dif-
ferential privacy considering diverse models of mapping h(·),
such as linear classifiers, support vector machines, matrix
factorization models.

6.3 Adjacency Relation
To properly apply Laplacian mechanisms, we consider the

following settings of adjacency relation “≈” to realize differ-
ent level of privacy settings, and the respective dmax.

• Complete Privacy: “≈” is defined as X1 and X2 that
differs in only one single entry. Let X1 = [x1D,V,R] and

X1 = [x2D,V,R]. Formally, we set X1 ≈ X2, if and only

if x1D′,V′,R′ 6= x2D′,V′,R′ for only one tuple (D′,V′,R′),

otherwise, x1D,V,R = x2D,V,R.

Let [xmin, xmax] be the range of each entry xD,V,R such
that xD,V,R ∈ [xmin, xmax]. Note that when a mea-
surement is absent (i.e., xD,V,R = “?′′), we assume
that it takes any arbitrary default value in [xmin, xmax].
Therefore, dmax = |xmax − xmin|.

• Type-revealing Privacy: “≈” is defined as X1 and
X2 that differs in only one single entry that belongs to
the same driver type. Let D be a set of driver types,
each D ∈ D is a set of drivers, who share similar driving
habits. Formally, X1 ≈ X2, if and only if x1D′,V′,R′ 6=
x2D′′,V′,R′ for only one pair (D′, D′′) ∈ D for some D ∈
D, otherwise, x1D,V,R = x2D,V,R.

Let [xDmin, x
D
max] be the type-specific range of each entry

xD,V,R such that D ∈ D. Note that when a measure-
ment is absent (i.e., xD,V,R = “?′′), we assume that
it takes any arbitrary default value in [xDmin, x

D
max].

Therefore, dtymax = maxD∈D |xDmax − xDmin|. Note that
[xDmin, x

D
max] ⊆ [xmin, xmax], and hence, dtymax ≤ dmax.

• Identity-revealing Privacy: “≈” is defined as X1

and X2 that differs in only one single entry of a partic-
ular driver and the predicted value without the driver.
Let x̂D,V,R be the predicted value. Suppose that x̂D,V,R ∈
[xD,Vmin, x

D,V
max]. When a measurement is absent (i.e., xD,V,R =

“?′′), we assume that it takes any arbitrary default

value in [xD,Vmin, x
D,V
max]. Therefore, didmax = maxD,V |xD,Vmax−

xD,Vmin|. Note that [xD,Vmin, x
D,V
max] ⊆ [xDmin, x

D
max], and hence,

didmax ≤ dtymax.

6.4 Estimation Error of Privacy Models
We implement the complete privacy based on Laplacian

mechanism to the models.

1. Comparison with the Average:

First we apply Laplacian mechanisms to comparison
with the average model. Define the mapping by h(X) =
[x̄R], where

x̄R =
∑
D,V

xD,V,R (12)

We suppose that the data collector will release [x̄R] to
the public data repository. When [x̄R] is known, each
driver can predict x̂D,V,R individually using Eqn. (5).

We perturb the aggregate average speed information,
and use it to create the personal adjustment functions



DxD,V(x̄R). We evaluate the error between true person-
alized speed and estimated personalized speed using
perturbed adjustment function.

2. Matrix Factorization:

For matrix factorization, we assume that the data col-
lector will first solve Eqn. (7) to obtain P,Q. Next,

from the data collector we will solve Q̃ from the fol-
lowing problem given P :

Q̃ = arg min
Q

∑
i,j∈M

(xij − piqTj )2 + λQ||qj ||2 (13)

The above problem can also be solved using stochastic
gradient descent. Let h(X) = Q̃, and Q̃ will be re-

leased to the public data repository. When Q̃ is known,
each driver can predict x̂D,V,R individually.

Fig. 3 shows the results of the error, we found that the
estimation error drops below 0.15 when the value of privacy
parameter ε is ln 3 which is considered as the acceptable
levels of privacy in the literatures. In addition, we found
that the matrix factorization method is less affected by the
perturbed features.
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Figure 3: Estimation error of the features by the perturbed
personalized models.

6.5 The Effect of Perturbed Features to En-
ergy Consumption Estimation

We examine the predictions of energy consumption to
ensure the perturbed features provide acceptable estima-
tions. The perturbed features are utilized in Eqn. (2) and
Eqn. (3) for the energy consumption predictions of the ve-
hicles. Fig. 4 depicts the energy prediction error using per-
turbed features estimated by the matrix factorization method.
We observe ln3- differential privacy provides below 10% en-
ergy estimation error.
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Figure 4: Energy estimation error of the perturbed matrix
factorization.

7. CONCLUSION
We consider the privacy of participatory sensing data from

the vehicles and discuss the estimation error of privacy-
enhanced data used to predict the energy consumption of the
vehicles. The privacy enhancing mechanism based on Lapla-
cian mechanism is implemented to perturb the sensing data
and the energy consumption estimation models. The esti-
mation errors of the features using two perturbed models are
below 10% with ln3-differential privacy, and we also observe
that the sensing data of the same privacy level can achieve
10% prediction error of the energy prediction models. Future
work will include evaluations of feature/energy prediction
error using the type-revealing privacy and identity-revealing
privacy mechanisms, furthermore, the best stage of privacy
perturbation will be evaluated.

8. REFERENCES
[1] A. Berlioz, A. Friedman, M. A. Kaafar, R. Boreli, and

S. Berkovsky. Applying differential privacy to matrix
factorization. In ACM Conf. on Recommender Systems, 2015.

[2] K. Boriboonsomsin and M. J. Barth. Impacts of road grade on
fuel consumption and carbon dioxide emissions evidenced by
use of advanced navigation systems. J. of the Transportation
Research Board, 2139:21–30, 2009.

[3] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A.
Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S.
Ahn. The rise of people-centric sensing. IEEE Internet
Computing, 12(4):12–21, 2008.

[4] A. Cappiello, I. Chabini, E. K. Nam, A. Lue, and M. A. Zed. A
statistical model of vehicle emissions and fuel consumption. In
IEEE ITSC, 2002.

[5] S. Dornbush and A. Joshi. Streetsmart traffic: Discovering and
disseminating automobile congestion using VANET. In IEEE
VTC, 2007.

[6] E. Ericsson. Indepentent driving pattern factors and their
influence on fuel-use and exhaust emission factor. J. of
Transportation Research, 6(5):325–345, 2001.

[7] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. In ACM SIGKDD, 2011.

[8] S. Grubwinkler and M. Lienkamp. A modular and dynamic
approach to predict the energy consumption of electric vehicles.
In Conf. on Future Automotive Technology, 2013.

[9] J. Hua, C. Xia, and S. Zhong. Differentially private matrix
factorization. In IJCAI, 2015.

[10] D. Karbowski, S. Pagerit, and A. Calkins. Energy consumption
prediction of a vehicle along specified real-world trip. In IEEE
EVS, 2012.

[11] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. J. of Computer,
42:30–37, 2009.

[12] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh. Privacy-preserving matrix factorization. In
ACM SIGSAC Conf. on Computer and Communications
Security, 2013.

[13] C.-M. Tseng and C.-K. Chau. Personalized prediction of
driving energy consumption based on participatory sensing.
Technical report, Masdar Institute, 2016.

[14] C.-M. Tseng, C.-K. Chau, S. Dsouza, and E. Wilhelm. A
participatory sensing approach for personalized
distance-to-empty prediction and green telematics. In ACM
E-energy, 2015.

[15] C.-M. Tseng, S. Dsouza, and C.-K. Chau. A social approach for
predicting distance-to-empty in vehicles. In ACM E-energy,
2014.

[16] E. Wilhelm, J. Siegel, S. Mayer, L. Sadamori, S. Dsouza, C.-K.
Chau, and S. Sarma. CloudThink: A scalable secure platform
for mirroring transportation systems in the cloud. Transport,
30(3), 2015.

[17] Q. Yang, K. Boriboonsomsin, and M. Barth. Arterial roadway
energy/emissions estimation using modal-based trajectory
reconstruction. In IEEE ITSC, 2011.


